Ƶ

header-logo
Research Group Lab Hall
Magdalena Chrzanowska, PhD, FAHA

Magdalena Chrzanowska, PhD, FAHA

Professor, Pharmacology and Toxicology; Program Co-Leader, Transfusion Medicine, Vascular Biology and Cell Therapy and Senior Investigator; Versiti Blood Research Institute

Locations

  • Versiti Blood Research Institute

Education

PhD, Cell Biology and Anatomy, University of North Carolina at Chapel Hill, 1996

Research Interests

At the Vascular Signaling Lab, we are dedicated to understanding the multifaceted role of endothelial cells in health and disease. Led by Dr. Magdalena Chrzanowska, our work is anchored in elucidating the function of a small GTPase Rap1 in the endothelium.

We have uncovered pivotal roles of Rap1 isoforms—Rap1A and Rap1B—in the endothelium, influencing critical aspects of endothelial function, including nitric oxide release, VEGFR2 signaling, angiogenesis and dynamic regulation of vascular permeability. Specifically, Rap1B plays a key role in mitigating inflammatory responses and influencing tumor progression.

Our current endeavors are directed at unraveling the physiological and pathological consequences of endothelial cell (EC) Rap1 activity and unraveling the cellular mechanisms of Rap1.

Ongoing projects:

  1. Endothelial control of heart function R01HL157893
    Understanding how ECs communicate with cardiac myocytes is critical for the regulation of cardiac contractile function. We are investigating how Rap1 isoforms in coronary (vascular) and heart microcapillary (cardiac) endothelial compartments control endothelial-smooth muscle cells and endothelial-cardiac myocyte communication to maintain coronary vessel function and cardiac contractility.

  2. Endothelial Rap1 in ischemic retinopathy R01EY036588 start 7/1/24
    With diabetic retinopathy the most common microvascular complication and the leading cause of acquired vision loss worldwide, our focus is the Rap1-driven mechanisms that control endothelial-leukocyte interactions, aiming to alleviate the inflammatory responses that contribute to retinal damage.

  3. EC mechanisms controlling hematopoiesis
    The bone marrow's vascular niche is essential for hematopoietic stem cell regulation and its disruption is linked with blood disorders. We are examining the mechanisms through which Rap1 in bone marrow ECs impacts hematopoiesis and erythropoiesis.

  4. EC Rap1 in tumor microenvironment
    Our research addresses the critical challenge of immunosuppression within tumor vasculature, crucial for advancing cancer immunotherapy. We've identified that endothelial Rap1B inhibits T-cell activity, promoting tumor growth. Currently, we are probing the mechanisms through which endothelial Rap1 modulates VEGF-driven immunosuppression and the interactions between tumor endothelial cells and leukocytes.

  5. Cell biology of Rap1A and Rap1B
    Our research is focused on dissecting the distinct and shared roles of Rap1A and Rap1B in endothelial functions. We investigate how Rap1A contributes to lung permeability and how Rap1B regulates the balance between endothelial homeostasis and inflammatory response, crucial for vascular health.

Our lab is committed to advancing understanding in these areas, striving for breakthroughs that can lead to innovative treatments for cardiovascular, ocular, hematopoietic, and cancer-related conditions.

Funding:
Current: R01HL157893 | Endothelial Rap1 in the control of heart function
Current: R01EY036588 | Endothelial Rap1 restricts inflammation in the retina

Publications

  • (Kosuru R, Chrzanowska M.) Int J Mol Sci. 2025 Jun 04;26(11) PMID: 40508181 PMCID: PMC12155061 06/13/2025

  • (Kosuru R, Romito O, Sharma GP, Ferraresso F, Ghadrdoost Nakhchi B, Yang K, Mammoto T, Mammoto A, Kastrup CJ, Zhang DX, Goldspink PH, Trebak M, Chrzanowska M.) Arterioscler Thromb Vasc Biol. 2024 Nov;44(11):2271-2287 PMID: 39324266 PMCID: PMC11495542 SCOPUS ID: 2-s2.0-85206451357 09/26/2024

  • (Ghadrdoost Nakhchi B, Kosuru R, Chrzanowska M.) Int J Mol Sci. 2024 Sep 12;25(18) PMID: 39337337 PMCID: PMC11432579 09/28/2024

  • (Sharma GP, Kosuru R, Lakshmikanthan S, Zheng S, Chen Y, Burns R, Xin G, Cui W, Chrzanowska M.) Angiogenesis. 2023 May;26(2):265-278 PMID: 36403190 SCOPUS ID: 2-s2.0-85142245350 11/21/2022

  • (Chowdhury CS, Wareham E, Xu J, Kumar S, Kofron M, Lakshmikanthan S, Chrzanowska M, Filippi MD.) Front Immunol. 2022;13:1061544 PMID: 36505495 PMCID: PMC9733537 12/13/2022

  • (Solís C, Thompson WC, Peña JR, McDermott-Roe C, Langa P, Warren CM, Chrzanowska M, Wolska BM, Solaro RJ, Pieter Detombe, Goldspink PH.) Front Physiol. 2022;13:1028345 PMID: 36467694 PMCID: PMC9709209 12/06/2022

  • (Singh B, Kosuru R, Lakshmikanthan S, Sorci-Thomas MG, Zhang DX, Sparapani R, Vasquez-Vivar J, Chrzanowska M.) Arterioscler Thromb Vasc Biol. 2021 Feb;41(2):638-650 PMID: 33267664 PMCID: PMC8105264 SCOPUS ID: 2-s2.0-85104181830 12/04/2020

  • (Kosuru R, Singh B, Lakshmikanthan S, Nishijima Y, Vasquez-Vivar J, Zhang DX, Chrzanowska M.) Front Cell Dev Biol. 2021;9:741935 PMID: 34422844 PMCID: PMC8378398 08/24/2021

  • (Kosuru R, Singh B, Lakshmikanthan S, Nishijima Y, Vasquez-Vivar J, Zhang DX, Chrzanowska M.) Front Cell Dev Biol. 2021;9:687598 PMID: 34222255 PMCID: PMC8247587 07/06/2021

  • (GaŁĄzka P, Chrzanowska M, StyczyŃski J.) In Vivo. 2021;35(1):585-591 PMID: 33402513 PMCID: PMC7880741 01/07/2021

  • (Kosuru R, Chrzanowska M.) Int J Mol Sci. 2020 Feb 27;21(5) PMID: 32120817 PMCID: PMC7084553 SCOPUS ID: 2-s2.0-85081026400 03/04/2020

  • (Balaji Ragunathrao VA, Anwar M, Akhter MZ, Chavez A, Mao Y, Natarajan V, Lakshmikanthan S, Chrzanowska-Wodnicka M, Dudek AZ, Claesson-Welsh L, Kitajewski JK, Wary KK, Malik AB, Mehta D.) Cell Rep. 2019 Dec 10;29(11):3472-3487.e4 PMID: 31825830 PMCID: PMC6927555 SCOPUS ID: 2-s2.0-85075997214 12/12/2019